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This paper reports the unique electronic properties of the local bottom-gated MoS2 thin-film transistors (TFTs) fabricated on
glass substrates. The current–voltage (I–V ) characteristics of field effect transistors exhibited the on/off ratio of ∼1 × 106

and mobility higher than 20 cm2 V−1 s−1. The doping concentration of MoS2 flakes extracted by capacitance–voltage (C–
V ) measurement is approximately 1016–1017 cm−3. These results demonstrate that the electrical performance of the local
bottom-gated TFTs are comparable with the conventional TFTs, providing important technical implications on the feasibility
of MoS2 TFTs.
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Introduction
Thin-film transistors (TFTs) in display backplanes have
played an essential role in the development of display
technologies. As displays require a larger screen size, a
smaller form factor, and a higher resolution, the existing
channel materials for TFTs, including amorphous sili-
con, organic semiconductors, low-temperature polysilicon
(LTPS), oxide semiconductors, and graphene, have shown
limitations such as low carrier mobility, incompatibility
with large-area processes, high subthreshold swing, and low
on/off ratio [1,2]. To overcome these difficulties, there is a
rapidly growing interest in layered semiconductors com-
posed of a transition metal and a chalcogen element [3,4].
Among these transition metal dichalcogenides (TMDCs),
molybdenum disulfide (MoS2) has been the most inves-
tigated because of its intriguing electrical and optical
properties [5,6]. The recent reports on the MoS2 TFTs indi-
cated interesting electrical properties, including high field
effect mobility, steep subthreshold slope for low power con-
sumption, high on/off ratio, and electrical reliability [7–10].
These results suggest that MoS2 can be a strong candi-
date for TFTs in the next-generation high-resolution liquid
crystal displays (LCDs) and organic light-emitting diode
(OLED) displays. There have been almost no reports, how-
ever, on the local bottom-gated MoS2 TFTs, whose struc-
tures are widely used for the actual backplanes in LCDs and
OLED displays. Therefore, in this paper, multilayer MoS2
TFTs with a local bottom-gated structure are demonstrated.
The local bottom-gated MoS2 TFTs presented in this paper
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were fabricated using processes compatible with those of
the conventional TFTs, and the electrical properties of such
local bottom-gated MoS2 TFTs were comparable with those
of the conventional TFTs.

Device fabrication and experiments
Figure 1 shows a typical example of two-dimensional (2D)
atomic layer-based materials for local bottom gated thin-
film transistors. The local bottom-gated MoS2 TFTs were
fabricated as shown in Figure 2(a). First, gate electrodes (Ti
∼10 nm/Au ∼100 nm) were patterned on a glass substrate.
This procedure formed the local bottom-gated structure.
Then an amorphous ∼100-nm-thick Al2O3 dielectric layer
was deposited on the substrate via atomic layer deposi-
tion (ALD) using trimethylaluminum (TMA, UP Chemical
Co. Ltd, South Korea) and H2O as a precursor and a reac-
tant. The deposition temperature was maintained at 300◦C,
and the gas injection schedule for one cycle of deposi-
tion was 0.5/10/1.5/15 s for the TMA/N2/H2O/N2 gases
[8]. The multilayer MoS2 was transferred on the glass sub-
strate from the bulk MoS2 through mechanical exfoliation.
Source/drain electrodes were patterned with Ti (10 nm)/Au
(300 nm) using a lift-off method followed by photolithogra-
phy. After the device fabrication, the TFTs were thermally
annealed in a H2 environment at 200◦C for 2 h to improve
the interface contact conditions between the metal and the
semiconductor. The device structure of the fabricated local
bottom-gated MoS2 TFT was similar to those of the real
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(a) (b)

Figure 1. (a) Examples of constituting TMDCs. They are made through the formation of MX2, where M = transition metal and
X = chalcogen, and form a two-dimensional layered structure. (b) Schematic crystal structure of MoS2.

(a) (b)

Figure 2. (a) Cross-sectional view of the multilayer MoS2 TFT including an ALD Al2O3 gate insulator (100 nm) and patterned Ti/Au
(10 nm/300 nm) S/D electrodes with a local bottom-gated structure. (b) Optical microscope image of the local bottom-gated MoS2 TFT
deposited on top of a glass substrate with a 100-nm-thick Al2O3 layer. The channel width and length of the TFT are 8.5 and 9.5 μm,
respectively.

commercial device structures of the backplane TFTs in the
OLED or LCD technology. An optical microscope image
(Olympus BX51M) of the fabricated local bottom-gated
MoS2 TFT is shown in Figure 2(b). The as-exfoliated mul-
tilayer MoS2 on the 100-nm-thick Al2O3 is between the
source and drain electrodes with a 9.5 μm channel length.
The patterned Ti/Au electrodes in the image were defined
using photolithography, as mentioned earlier.

Results and discussion
I–V characteristics
The current–voltage (I–V ) characteristics were measured
to investigate the electrical device performances of the fab-
ricated MoS2 device. The I–V measurement was performed
using the semiconductor characterization system (Keith-
ley 4200 SCS) with a probe station in a local back-gated
method, at room temperature. Figure 3 shows the electri-
cal characteristics of the local bottom-gated MoS2 TFT
(gate length, ∼9.5 μm; width, ∼8.5 μm) with a 100-nm-
thick ALD Al2O3 gate insulator. The transfer characteristics
and the extracted mobility curve of the MoS2 TFT are
shown in Figure 3(a). The MoS2 TFT exhibited a maximum
transconductance (gm = dId/dVgs|V ds=1 V) of 1.18 μS and
showed an n-type behavior with an on- and off-current ratio
(Ion/Ioff ) of ∼1 × 106. The field effect mobility of the MoS2

transistor can be calculated as μeff = Lgm/(WCoxVds),
where L is the channel length, W is the channel width, and
Cox is the back-gate capacitance. The mobility extracted
from the transfer curve was 21.4 cm2 V−1 s−1 at the linear
region (Vds = 1 V).

Figure 3(b) shows the output curves (Vds–Id) of a rep-
resentative MoS2 transistor displaying n-channel transistor
characteristics. It exhibited robust current saturation char-
acteristics, as evidenced by the fact that the slope of each
Id curve was flat for a large Vds. In Figure 3(c), the linear
Vds–Id curve of the MoS2 transistor indicates an Ohmic con-
tact being established at the interface. These results show
that the local bottom-gated MoS2 TFT is comparable to the
conventional TFTs, such as the amorphous Si, LTPS, or
oxide TFT.

C–V characteristics
Figure 4 shows the capacitance–voltage (C–V ) characteris-
tics along the measurement setup. During the measurement,
the source and drain contacts were grounded, as shown in
Figure 4(a). Due to the very small area of the capacitor, noisy
C–V curves were obtained at low frequencies (not shown).
In the local bottom-gated structure, the existing parasitic
capacitance, such as the pad capacitance, became negligible
and, as such, only the pure channel capacitance was consid-
ered. The high-frequency C–V curves measured at 1 MHz
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(a)

(c)

(b)

Figure 3. I–V characteristics of the local bottom-gated MoS2 TFT. (a) Transfer curve measured under Vds = 1 V and extracted mobility
curve of the MoS2 transistor. The field effect mobility at the linear region was 21.4 cm2/V s, and the Ion/Ioff was ∼106. (b) Output
characteristics of the MoS2 transistor. The curves recorded for various back-gated voltages with a 2 V step. (c) Diode characteristics of
the MoS2 transistor.

(a) (b)

Figure 4. C–V measurement of the local bottom-gated MoS2 TFT. (a) Schematic diagram of the C–V measurement setup. (b) Measured
C–V curve of the MoS2 transistor. The curve was measured under a frequency of 1 MHz.

are shown in Figure 4(b). They exhibit transition from
accumulation to depletion as the gate voltage decreases,
which is typically observed for an n-type metal-oxide-
semiconductor capacitor. The hysteresis observed in the
C–V curves (∼5 V) is wider than that reported by Liu and
Ye [11]. The nature of hysteresis can be speculated based

on its direction: for the n-type capacitor, counterclockwise
or clockwise hysteresis indicates that its dominant origin
is mobile ions (or) charge injection. Also, the differences
in the experimental conditions and device structure might
have influenced the hysteresis as the primary origin of the
hysteresis was the trapping states induced by the absorbed
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water molecules on the MoS2 surface [12,13]. The passiva-
tion of the MoS2 channel layer will be able to significantly
reduce the hysteresis. The doping concentration estimated
from the C–V curves was ∼1016–1017 cm−3, which well
agrees with the figure reported in these authors’ previous
publication [8].

Conclusion
In summary, local bottom-gated TFTs were fabricated on
glass via the mechanical exfoliation of MoS2. The current–
voltage (I–V ) characteristics of the local bottom-gated
TFTs showed a high on/off ratio of 1 × 106 and mobil-
ity exceeding 20 cm2V−1 s−1. The capacitance–voltage
(C–V ) characteristics measured at 1 MHz exhibited a typi-
cal n-type behavior with transition from accumulation to
depletion. The doping concentration estimated from the
C–V curves was ∼1016–1017 cm−3. The results demon-
strate that the electrical performance of the fabricated local
bottom-gated MoS2 TFTs is comparable with those of the
real commercial TFTs used in the backplanes of LCD or
OLED displays.
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