Electrical Contact Analysis of Multilayer MoS₂ Transistor With Molybdenum Source/Drain Electrodes

Geonwook Yoo, Sungho Lee, Byoungwook Yoo, Chuljong Han, Sunkook Kim, and Min Suk Oh

Abstract—We demonstrate a two-dimensional (2D) multilayered molybdenum disulfide (MoS₂) transistor with molybdenum (Mo) side and edge contacts, which is deposited using a dc-sputtering method. It exhibits field-effect mobility of 23.9 cm²/Vs and ON/OFF ratio of 10^6 in a linear region. A current–voltage study under different temperatures (300–393 K) reveals that the Mo–MoS₂ transistor shows a band transport characteristics, and a Schottky barrier height of 0.14 eV is estimated using a thermionic emission theory. Finally, the side and edge contacts of Mo–MoS₂ are confirmed through the transmission electron microscope analysis. Our results not only show that Mo can be an alternative contact metal to other low work-function metals but also that the edge contact may play an important role in resolving the performance degradation over thickness increase of the MoS₂ channel layer.

Index Terms—Molybdenum, edge contact, Schottky barrier, contact resistance, MoS₂.

I. INTRODUCTION

T WO-DIMENSIONAL (2D) materials such as molybdenum disulfide (MoS₂) have drawn great interests as promising channel materials for emerging electronic devices [1]–[5]. MoS₂ has a relatively large band gap (1.2 - 1.8 eV) depending on a number of layers [1], a high mobility (\sim 200 cm²/V · s) with a high-k dielectric layer [2], and absence of dangling bonds [3]. Moreover, its atomically thin 2D layered structure is suitable for a thin-film transistor (TFT) structure, and therefore MoS₂ can have an advantage of relatively simple fabrication process steps for large area low-cost electronics [4]. These unique properties have been facilitating intensive research efforts to i) understand the electrical [3], [4] and optical [6], [7] properties, ii) find proper contact metals [8], [9], interface layers [10], and diverse applications [4]–[6].

Especially, metal contacts to MoS_2 have been investigated intensively since it is one of major factors limiting device performance. Its large band gap and lack of controllable as

Manuscript received September 2, 2015; accepted September 10, 2015. Date of publication September 15, 2015; date of current version October 21, 2015. This work was supported by the Industrial Strategic Technology Development Program under Grant 10045145. The review of this letter was arranged by Editor A. Ortiz-Conde. (*Corresponding author: Min Suk Oh.*)

G. Yoo, S. Lee, B. Yoo, C. Han, and M. S. Oh are with the Display Convergence Research Center, Korea Electronic Technology Institute, Seongnam 463-816, Korea (e-mail: ohms@keti.re.kr).

S. Kim is with the Department of Electronics and Radio Engineering, Kyung Hee University, Yongin 446-701, Korea.

Color versions of one or more of the figures in this letter are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/LED.2015.2478899

well as stable doping methods result in a Schottky contact instead of an ohmic contact at the metal-MoS₂ interface [9]. Therefore several researches have focused on reducing a Schottky barrier height and contact resistance by adopting not only low work-function metals such as Sc (3.5 eV) [8], In (4.1 eV) and Ti (4.3 eV) [11] but also other 2D materials (e.g. graphene) [9]. Ti in particular is a high-performance contact attributed to its metallization of MoS₂ layer by forming Ti-S covalent bonds [11]. However, those low workfunction metals may suffer from poor surface stability and thermal/electrical conductivity. Although Mo is not a low-work function metal (4.5 eV), it is one of the elements of MoS_2 and induces metallization of MoS₂ layer under the contact, resulting in reduced tunnel barrier and therefore improvement to Mo-MoS₂ contact properties. Recently, Mo is explored as an alternative contact to monolayer and few layer MoS2 using simulations and experiments [12].

In this letter, we present electrical contact analysis of multilayer MoS₂ transistor with DC-sputtered Mo S/D contacts in more detail. We investigate electrical properties and temperature-dependence of Mo-MoS₂ transistor from I-V measurements for 300 K ~ 393 K. A Schottky barrier height (Φ_{SB}) is extracted, and other contact properties are also studied. Finally, possibility of edge contact formation in addition to side contact is verified using transmission electron microscope (TEM) analysis, and its contribution to the electrical characteristics is discussed.

II. EXPERIMENTS

Multilayered MoS₂ flakes were mechanically exfoliated from bulk MoS₂ crystals (Graphene market, USA) by a conventional scotch-tape method, and then transferred to a heavily doped p-type Si substrate with thermally grown 200 nm SiO_2 layer. S/D contacts were patterned on top of MoS_2 flakes using conventional lift-off technique. Mo (120 nm) was deposited by DC magnetron sputtering with 150 W in argon (Ar) ambient. The fabricated device was then annealed at 573 K in N₂ for 10 min using a rapid thermal annealing to remove any absorbed organic residues and to improve contact resistance. The thickness of the MoS₂ channel layer and other TFT dimensions (W/L) were identified using atomic force microscope (AFM) and an optical microscope, respectively. Current-voltage (I-V) measurements from 300 K to 393 K were performed by using a semiconductor parameter analyzer (HP 4156C) and a probe station with a temperature controlled

0741-3106 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Fig. 1. (a) SEM image of the fabricated MoS_2 transistor with Mo S/D contacts (Inset) AFM profile of the MoS_2 channel thickness. (b) Cross sectional schematic of Mo-MoS₂ transistor with side and edge contact. (c) Band alignment of MoS_2 with Mo.

Fig. 2. (a) Transfer characteristics of the Mo-MoS₂ TFT for $V_{DS} =$ 1 V and 10 V. (Inset) Output characteristics for $V_{GS} = -4, -2, 0, 2, 4$ V. (b) Extracted total resistance (R_{total}), calculated channel (R_{ch}) and contact resistance (R_c) as a function of gate voltage. R_c takes ~6 % of R_{total} .

chuck (MSTECH M6VC). To observe side and edge contacts to multilayer MoS_2 , a sample was prepared and analyzed by using focused ion-beam (FIB) -SEM and TEM (JEOL, JEM-2100F), respectively.

III. RESULTS AND DISCUSSIONS

Fig. 1(a) and (b) show an SEM image and cross-sectional schematic of the fabricated MoS₂ transistor, respectively. In the inset of Fig. 1(a), we identify the MoS₂ channel layer was ~ 67 nm thick using AFM, which is corresponding to ~ 96 MoS₂ monolayers and bulk-like bandgap of 1.2 eV. The band diagram in Fig. 1(c) represents a work-function alignment of Mo (4.5 eV) contact to a multilayered MoS₂.

Fig. 2 (a) shows the measured transfer curves of I_{DS} - V_{GS} for $V_{DS} = 1$ and 10 V, and output curves of I_{DS} - V_{DS} for $V_{GS} = -4, -2, 0, 2, 4$ V. The field-effect mobility (μ_{FE}) of 23.9 cm²/Vs in a linear operation region was extracted from

TABLE I SUMMARY OF CONTACT RESISTANCE FOR DIFFERENT CONTACT METALS

Metal	MoS ₂ layer	L [µm]	C _{OX} [F/cm ²]	V _{GS} -V _{TH} [V]	R _C [kΩ∙µm]	Ref.
Ti	46	3	3.8e-8 (SiO ₂)	~57	~53	[13]
Ni	7	0.5	1.1e-8 (SiO ₂)	~20	~200	[14]
Мо	4	2	9.1e-8 (Al ₂ O ₃)	~65	~2	[12]
Мо	96	10	1.7e-8 (SiO ₂)	~14.1	~112	This work

 $\mu_{FE} = L \cdot g_m / (W \cdot C_{OX} \cdot V_{DS})$, where $W/L = 10.1 \mu m/10 \mu m$, $C_{OX} = 1.7 \times 10^{-8}$ F/cm², $V_{DS} = 1$ V. The on/off-current ratio (I_{ON}/I_{OFF}) of ~ 10⁶ and sub-threshold swing (SS) of 2.47 V/dec were also obtained, and threshold voltage (V_{TH}) was calculated to be -10.1 V by using linear extrapolation method in a linear region $(V_{DS} = 1 \text{ V})$. V_{TH} was found from the intercept of a tangent at the max. g_m with V_{GS} axis.

Fig. 2(b) shows the extracted on-state resistance (R_{on}) in a linear region from the I_{DS} - V_{DS} curves, and channel resistance (R_{ch}) , which is calculated from $R_{ch} = L/(\mu_{FE} \cdot W \cdot$ $C_{OX} \cdot (V_{GS} - V_{TH})$ where W/L, C_{OX} , μ_{FE} , and V_{TH} values are from a linear region, is also presented. Resistance value was normalized with the channel width. Based on the extracted R_{on} and the calculated R_{ch} , Mo-MoS₂ contact resistance (R_c) was obtained from $R_{on} = R_{ch} + 2 \cdot R_c$, and a value of ~112 k $\Omega \cdot \mu m$ is found at $V_{GS} = 4$ V. It is slightly higher or similar with that of Ti and Ni contact to multilayer MoS₂ measured even under very high gate-bias from the recent works as summarized in Table I. Although it is \sim 50 times higher than that of same Mo contact to 4-layer MoS₂ at a very high overdrive voltage $(V_{GS} - V_{TH})$, the difference is mainly attributed to the gate-bias condition since edge-contact between Mo and multilayer MoS₂ is achieved in our case and thus MoS₂ interlayer effect is minimized [12].

By performing I-V measurements for different temperatures (300 - 393 K), we obtained temperature-dependence of Mo-MoS₂ transistor and estimated Φ_{SB} . Fig. 3 (a) shows the transfer characteristics shift with increasing temperatures, and the inset represents temperature-dependent behaviors of μ_{FE} and V_{TH} . μ_{FE} and V_{TH} were extracted in the same manner as described above. μ_{FE} decreases from 24.0 to 16.6 cm²/V · s as the temperature increases; V_{TH} shifts toward a negative direction from -10.1 to -20.1 V. The decrease of μ_{FE} is due to surface roughness and phonon scattering in the channel instead of Mo-MoS₂ contact, and the negative shift of V_{TH} is caused by thermally generated charges in the channel. These trends are band transport characteristics with the Mo-MoS₂ contacts [13].

Next, we built Arrhenius plot based on Fig. 3 (a), and by assuming conventional thermionic emission theory, we extracted Φ_{SB} from the equation $J_{DS} = A^* \cdot T^2 \cdot exp(-q\Phi_B/kT) \cdot [exp(qV_{DS}/kT) - 1]$, where A^* is Richardson constant, T is temperature, q is the elementary charge, k is the Boltzman constant [8]. In Fig. 3 (b), effective Φ_{SB} of 0.14 eV is extracted at

Fig. 3. (a) $I_{DS} - V_{GS}$ transfer curves at $V_{DS} = 1$ V for 300 – 393 K. (Inset) The temperature-dependence of the field-effect mobility (μ_{FE}) and threshold voltage (V_{TH}). (b) Extracted Schottky barrier height (Φ_{SB}) as a function of gate-bias (V_{GS}) (Inset) Extracted Φ_{SB} with no V_{TH} shift.

a specific bias, and this value is similar with $\Phi_{SB} = 0.1 \text{ eV}$ that is calculated by density functional theory simulation [12]. Since the Φ_{SB} could be overestimated in the presence of large V_{TH} shift in our experiment, compensated Φ_{SB} (35 meV) was also extracted by shifting I-V curves for temperatures higher than 300 K as shown in the inset of Fig. 3 (b). This significant reduction of Φ_{SB} was because the current component in off-states due to V_{TH} shift was excluded and therefore I_{DS} was much lowered.

Since S/D electrodes cannot contact all the layers and gate-bias can modulate bottom layers only, μ_{FE} , R_c , and I_{DS} properties degrade exponentially with the thickness of MoS₂ in absence of edge contacts [8], [13]. Thus edge contacts are important in multilayer MoS₂ to enhance electrical performance by taking advantage of contacting all the conducting channels. Our Mo-MoS₂ transistor (96L) shows similar or slightly worse electrical properties compared to few-layer (3L - 5L) MoS₂ with Mo side contact which was measured even under high vacuum as summarized in Table II, and this improvement can be explained with edge contact formed by conformal deposition of DC-sputtering. Fig. 4 shows TEM images with energy dispersive spectroscopy (EDS) analysis from the side and edge contact; transition layer at the interface of side and edge contact was $1.55 \sim 1.92$ nm thick, in which atomic % ratio of Mo:S changed roughly from $35:65 (MoS_2)$ to 90:10 (Mo). The transition layer formed due to interface mixing effect by high energy deposition of DC-sputtering method used in this work. Role of edge contact, which was proved in graphene experimentally and theoretically [16], [17], has been proposed in multilayer MoS₂ case theoretically [8], [11], [12]. In this work, we believe that the edge contact might contribute to maintain electrical

TABLE II Comparison of Field-Effect Mobilities for Different MoS₂ Thickness

MoS ₂ layer	W/L	C _{OX} [F/cm ²]	Measurement condition	$\begin{array}{c} \mu_{FE} \\ [cm^2/Vs] \end{array}$	Ref.
1	2/2			~13	
3	-	9.1e-8 (Al ₂ O ₃ ,72nm)	300K/ 1e-6 mbar	~27	[12]
4	3.8/2			~26	
96	10.1/ 10	1.7e-8 (SiO ₂ , 200nm)	300 K/ 1 atm	~24	This work

Fig. 4. (a) Cross sectional TEM image of Mo-MoS₂ contact with indications of measured locations. (b) Side contact from the top (0) showing transition layer thickness of 1.55 nm, which is estimated using EDS analysis (Inset). (c) Edge contact from the bottom (3) showing MoS₂ interlayer thickness of 0.63 nm. (d) Edge contact from the side (2) showing transition layer thickness of 1.92 nm.

performance in thick multilayer MoS_2 transistor compared to that of side contacted few-layer MoS_2 case. Further experimental studies for various MoS_2 thicknesses and other contact metals are suggested to corroborate the edge contact effect in general.

IV. CONCLUSION

In summary, we have fabricated multilayer MoS₂ transistor with side and edge contacted Mo S/D electrodes which was deposited by DC sputtering. I-V characterizations under different temperatures showed a band transport characteristics, and a Schottky barrier height of 0.14 eV was estimated. The Mo-MoS₂ transistor displayed similar μ_{FE} (23.9 cm²/Vs in linear regime) and, I_{DS} (~1 μ A/ μ m at V_{DS} = 1 V, V_{GS} = 30 V) compared to previous optimal finite layer MoS₂ transistor with Mo side contact only. Our experimental results suggest that edge contact may play an important role in resolving performance degradation over thickness increase of MoS₂ channel layer.

REFERENCES

 K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, "Atomically thin MoS₂: A new direct-gap semiconductor," *Phys. Rev. Lett.*, vol. 105, no. 13, p. 136805, 2010. DOI: 10.1103/PhysRevLett.105.136805

- [2] L. Liu, S. B. Kumar, Y. Ouyang, and J. Guo, "Performance limits of monolayer transition metal dichalcogenide transistors," *IEEE Trans. Electron Devices*, vol. 58, no. 9, pp. 3042–3047, Sep. 2011. DOI: 10.1109/TED.2011.2159221
- [3] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS₂ transistors," *Nature Nanotechnol.*, vol. 6, no. 3, pp. 147–150, 2011. DOI: 10.1038/nnano.2010.279
- [4] S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, "High-mobility and low-power thin-film transistors based on multilayer MoS₂ crystals," *Nature Commun.*, vol. 3, p. 1011, 2012. DOI: 10.1038/ncomms2018
- [5] H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu, M. L. Chin, L.-J. Li, M. Dubey, J. Kong, and T. Palacios, "Integrated circuits based on bilayer MoS₂ transistors," *Nano Lett.*, vol. 12, no. 9, pp. 4674–4680, 2012. DOI: 10.1021/nl302015v
- [6] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, "Single-layer MoS₂ phototransistors," ACS Nano, vol. 6, no. 1, pp. 74–80, 2012. DOI: 10.1021/nn2024557
- [7] K. Cho, T.-Y. Kim, W. Park, J. Park, D. Kim, J. Jang, H. Jeong, S. Hong, and T. Lee, "Gate-bias stress-dependent photoconductive characteristics of multi-layer MoS₂ field-effect transistors," *Nanotechnology*, vol. 25, no. 15, pp. 155201–155207, 2014. DOI: 10.1088/0957-4484/25/15/155201
- [8] S. Das, H.-Y. Chen, A. V. Penumatcha, and J. Appenzeller, "High performance multilayer MoS₂ transistors with scandium contacts," *Nano Lett.*, vol. 13, no. 1, pp. 100–105, 2013. DOI: 10.1021/nl303583v
- [9] Y. Du, L. Yang, H. Liu, and P. D. Ye, "Contact research strategy for emerging molybdenum disulfide and other two-dimensional field-effect transistors," *APL Mater.*, vol. 2, no. 9, pp. 092510-1–092510-10, 2014. DOI: 10.1063/1.4894198

- [10] H. Liu and P. D. Ye, "MoS₂ dual-gate MOSFET with atomic-layer-deposited Al₂O₃ as top-gate dielectric," *IEEE Electron Device Lett.*, vol. 33, no. 4, pp. 546–548, Apr. 2012. DOI: 10.1109/LED.2012.2184520
- [11] J. Kang, W. Liu, D. Sarkar, D. Jena, and K. Banerjee, "Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors," *Phys. Rev. X*, vol. 4, no. 3, pp. 031005-1–031005-14, 2014. DOI: 10.1103/PhysRevX.4.031005
- [12] J. Kang, W. Liu, and K. Banerjee, "High-performance MoS₂ transistors with low-resistance molybdenum contacts," *Appl. Phys. Lett.*, vol. 104, no. 9, pp. 093106-1–093106-5, 2014. DOI: 10.1063/1.4866340
- [13] W. Liu, J. Kang, W. Cao, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, "High-performance few-layer-MoS₂ field-effect-transistor with record low contact-resistance," in *Proc. IEEE Int. Electron Device Meeting*, Dec. 2013, pp. 19.4.1–19.4.4. DOI: 10.1109/IEDM.2013.6724660
- [14] A. T. Neal, H. Liu, J. J. Gu, and P. D. Ye, "Metal contacts to MoS₂: A two-dimensional semiconductor," in *Proc. IEEE Device Res. Conf.*, Jun. 2012, pp. 65–66. DOI: 10.1109/DRC.2012.6256928
- [15] H.-J. Kwon, J. Jang, S. Kim, V. Subramanian, and C. P. Grigoropoulos, "Electrical characteristics of multilayer MoS₂ transistors at real operating temperatures with different ambient conditions," *Appl. Phys. Lett.*, vol. 105, no. 15, pp. 152105-1–152105-5, 2014. DOI: 10.1063/1.4898584
- [16] L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean, "One-dimensional electrical contact to a two-dimensional material," *Science*, vol. 342, no. 6158, pp. 614–617, 2013. DOI: 10.1126/science.1244358
- [17] Q. Gao and J. Guo, "Role of chemical termination in edge contact to graphene," *APL Mater.*, vol. 2, no. 5, pp. 056105-1–056105-6, 2014. DOI: 10.1063/1.4876635